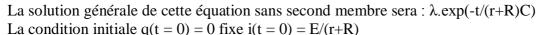
1. Réponse d'un circuit R-C série à un échelon de tension :

- A) a) générateur de tension de fém E et de résistance interne r + R
- b) La loi de maille donne : $E = (r + R)i(t) + \frac{1}{C}q(t)$. On a choisi

l'orientation du condensateur de façon à ce que i(t) = dq/dt.

en dérivant / t :
$$(r+R)\frac{di}{dt} + \frac{i}{C} = 0$$

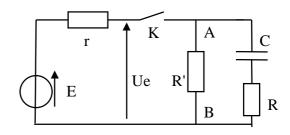


d'où:
$$i(t) = \frac{E}{R+r} \exp\left[\frac{-t}{(r+R)C}\right]$$

c)
$$u_e(t) = E - r.i(t) = u_C(t) + R.i(t)$$
; $u_R(t) = R.i(t)$
Pour le tracé :

$$u_e(0) = R.E/(R+r)$$
 et $u_e(\infty) = E$;

$$u_{R}(0) = R.E/(R+r) \text{ et } u_{R}(\infty) = 0.$$



générateur

B) a) Pour se ramener à un circuit à une maille, on va représenter le dipôle (AB) selon Thévenin (Utiliser d'abord la représentation de Norton sur (E,r)...)

$$E_{AB} = R'.E/(r+R')$$
 et $R_{AB} = r.R'/(r+R')$

b)
$$u_e(t) = u_e(t) = E - r.i(t)$$
 soit :

$$u_e(t) = E - \frac{rR'E}{(r+R')R + rR'} exp\left(\frac{-(r+R')t}{(rR+rR'+RR')C}\right)$$

2. Réponse d'un circuit inductif à un échelon de courant :

a)
$$a-1$$
) $I_0 = i(t) + i'(t)$; $L(di/dt) + Ri(t) = R'.i'(t)$ menent à

l'équation du circuit :
$$\frac{di}{dt} + \frac{R+R'}{L}i = \frac{R'}{L}I_o$$

La résolution de cette équation amène :

$$i(t) = \frac{R'I_o}{R+R'} \left(1 - \exp\left[\frac{-(R+R')t}{L}\right] \right)$$

a-2) Le dipôle (I_o, R') est un dipôle de Norton. Sa représentation de Thévenin aura pour fém : $R'I_o$ et pour résistance équivalente R'. On aboutit alors à un circuit à une seule maille, pour laquelle l'équation de maille s'écrit :

$$L\frac{di}{dt} + (R + R')i = R'I_o$$
; même solution qu'en a-1).

b)
$$i'(t) = I_0 - i(t) = \frac{RI_o}{R+R'} + \frac{R'I_o}{R+R'} \exp\left[\frac{-(R+R')t}{L}\right]$$
 courant traversant R', et u (t) = R'.i'(t)

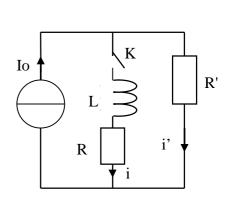
c) Pour tracer i(t) et u (t):

$$i(0) = 0$$
; $i(\infty) = R'I_0/(R+R')$; $u(0) = R'I_0$; $u(\infty) = RI_0/(R+R')$.

1) Ecrivons la loi de maille quand K est en position (0):

 $e_o = (r_o+R) i + q/C \text{ avec } i = dq/dt.$

Condition initiale : q(0) = 0



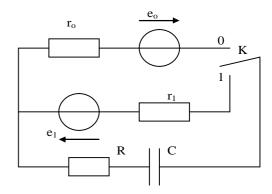
Solution : $q(t) = Ce_o(1 - exp(-t/\tau_o))$ avec $\tau_o = (r_o + R)C$

 t_1 est tel que : $q(t_1) = Ce_0/2$.

L'équation $Ce_o(1 - exp(-t_1/\tau_o)) = Ce_o$ donne $t_1 = \tau_o ln 2$.

2) pour $t > t_1$, la loi de maille (quand K est en position (1)), s'écrit : $-e_1 = (r_1 + R) i + q/C$ avec toujours i = dq/dt.

La solution générale est : $q(t) = -Ce_1 + A.exp(-t/\tau_1)$ avec $\tau_1 = (r_1 + R)C$



La condition de continuité sur q(t) impose : $q(t_1) = Ce_0/2 = q(t_1) = -Ce_1 + A.exp(-t_1/\tau_1)$ D'où $A = C(e_0/2 + e_1)$. $exp(+t/\tau_1)$.

On va donc expliciter q(t) sous la forme : $q(t) = -Ce_1 + C(e_0/2 + e_1) \cdot exp(-(t - t_1)/\tau_1)$.

L'exposant en $(t-t_1)$ peut être interpréter comme un changement d'origine des temps : pour $t > t_1$ on aura $(t-t_1) > 0$, et il apparaîtra alors une décroissance exponentielle de la charge à partir de sa valeur $Ce_0/2$ obtenue à $t=t_1$.

3) $t_2 \neq 0$ et t_2 tel que la charge q s'annule. $q(t > t_1) = 0$ donne $t_2 = t_1 + \tau_1 ln(1 + e_0/2e_1)$

4. Régime transitoire pour deux condensateurs en opposition :

a)
$$i = \frac{dq_1}{dt} = -\frac{dq_2}{dt}$$
 d'où $q_1 + q_2 = cste = q_0$.

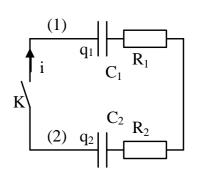
Loi de maille : q_1/C_1 - $R_1i = q_2/C_2 + R_2i$

En éliminant q_2 on va tirer une équation en $q_1(t)$:

$$\frac{dq_1}{dt} + \frac{1}{R_1 + R_2} \frac{C_1 + C_2}{C_1 \cdot C_2} q_1 = \frac{1}{(R_1 + R_2)C_2} q_o$$

La résolution, avec la condition initiale $q_1(0) = q_o$ donne :

$$q_1(t) = q_o \left(\frac{C_2}{C_1 + C_2} \exp \left[\frac{-t}{\tau} \right] + \frac{C_1}{C_1 + C_2} \right) \text{ où } \tau = \frac{(R_1 + R_2)C_1.C_2}{C_1 + C_2}$$



b) W sera la différence entre l'énergie électrique initialement contenue dans le condensateur C_1 et l'énergie électrique résiduelle à l'état final dans les deux condensateurs.

$$W = \int_{0}^{\infty} Ri(t)^{2} dt = \frac{1}{2} \frac{q_{o}^{2}}{C_{1}} - \frac{1}{2} (C_{1} + C_{2}) U_{\infty}^{2} \text{ où } U_{\infty} \text{ est la tension finale sur } q_{1} \text{ et } q_{2}.$$

$$U_{\infty} = q_{o} / (C_{1} + C_{2}).$$

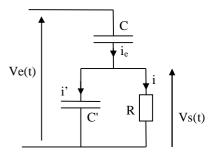
5. Réponse à une tension en dent de scie :

La loi de nœud : $i_e = i + i$ ' se traduit par $C \frac{d(V_e - V_s)}{dt} = \frac{V_s}{R} = C' \frac{dV_s}{dt}$

Soit après mise en forme :

$$\frac{dV_s}{dt} + \frac{1}{R(C+C')}V_s = \frac{C}{C+C'}\frac{dV_e}{dt} ;$$

La condition initiale se traduit par $V_s(0) = 0$.



pour
$$0 < t < T$$
, $V_e(t) = k.t$ donc $dV_{e'}dt = k$. La solution est $V_s(t) = kRC(1-exp(-t/\tau))$ pour $t > T$, $V_e(t) = 0$ donc $dV_{e'}dt = 0$.

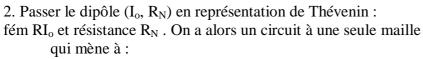
La solution générale est $V_s(t) = A.\exp(-t/\tau)$ et compte tenu de la condition de continuité sur V_s ,

 $V_S(t=T)=kRC$ (car $T>>\tau$, le circuit atteint quasiment le régime permanent en fin de première phase) : $V_s(t)=kRC.exp(-(t-T)/\tau)$

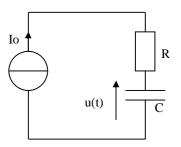
6. Réponse d'un circuit RC à un générateur de courant :

1. En intégrant $I_0 = Cdu/dt$ on obtient : $u(t) = I_0 \cdot t / C$.

 $u(t) \rightarrow \infty$ quand $t \rightarrow \infty$ impossible de conserver ce modèle sur une grande durée.



$$u(t) = R_N.I_o \; (1 - exp(-t/\tau)) \qquad \text{où } \tau = (R_N + R).C \label{eq:utau}$$

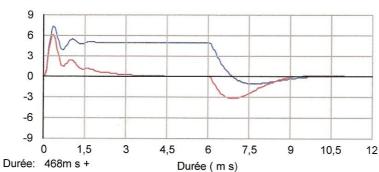


En faisant un DL1 au voisinage de 0 pour $t << \tau$: $u(t) \approx R_N I_o (1-(1-t/\tau)) = R_N I_o .t/\tau$ on retrouve l'expression du 1.

7. Réponse à un échelon de tension. Etude aux limites.

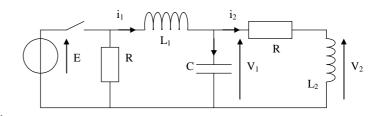
On considère le circuit ci-dessous. Le graphe représente une simulation de son comportement.

Tension (V)



a) L'interrupteur est fermé à l'instant t=0, sachant qu'auparavant le condensateur était déchargé et les bobines n'étaient parcourues par aucun courant.

* à
$$t = 0$$
 : $i_1(0+) = 0$ et $i_2(0+) = 0$ car on a continuité de l'intensité traversant une bobine.



 $V_1(0+) = 0$ par continuité de la tension sur un condensateur.

R.
$$i_2(0+) = 0$$
 donc $V_2(0+) = V_1(0+) - R$. $i_2(0+) = 0$.

$$i_c + i_2 = i_1$$
 amène $i_c(0+) = C.(dV_1/dt)(0+) = 0$

 $V_1 = R.i_2 + V_2$ à tout instant. Dérivons cette équation par rapport au temps :

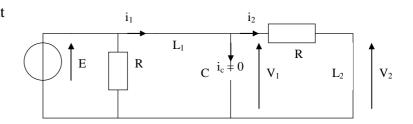
 $dV_1/dt = R.di_2/dt + dV_2/dt$ à tout instant.

Or $V_2 = L_2.di_2/dt$ amène : $(di_2/dt)(0+) = 0$

par ailleurs, on a montré : $(dV_{1}/dt)(0+) = 0$ donc : $(dV_{2}/dt)(0+) = 0$

* à t > 4.5 ms, on trouve le comportement à $t \to \infty$ (fin du régime transitoire) : le circuit équivalent sera :

donc
$$V_2 \rightarrow 0$$
 et $V_1 \rightarrow E$.



b) Toujours à partir des conditions de continuité : $i_1(t_0) = i_2(t_0) = E/R$. $V_1(t_0) = E$ et donc $V_2(t_0) = 0$. Comme $i_1(t_0) = i_2(t_0)$, $i_c(t_0) = 0 = C(dV_1/dt)(t_0)$.

 $V_2 = L_2.di_2/dt$ amène : $(di_2/dt)(t_0) = 0$

Or $V_1 = R.i_2 + V_2$ à tout instant. En Dérivant cette équation par rapport au temps :

 $dV_1/dt = R.di_2/dt + dV_2/dt$ à tout instant.

Comme $(dV_1/dt)(t_0) = 0$ et $(di_2/dt)(t_0) = 0$, il vient $(dV_2/dt)(t_0) = 0$.

8. Régime transitoire d'un circuit L-C :

On posera $\omega_0^2 = 1/LC$.

 $I_o = i_L + i_C$; $V(t) = Ldi_L/dt$ avec $i_C = CdV/dt$

 $donc: i_C = LCd^2i_L/dt^2$.

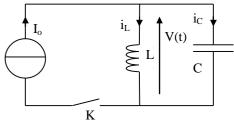
D'où l'équation sur i_L : $I_o = i_L + LCd^2i_L/dt^2$

Solution particulière : $i_L = I_o$; solution générale :

 $i_L = A.\cos\omega_0 t + B\sin\omega_0 t$

conditions initiales : $i_L(0) = 0$ et $V(0) = Ldi_Ldt(0) = 0$, qui amènent : $i_L(t) = I_o.(1 - \cos\omega_o t)$

on déduit ensuite aisément : $i_C(t) = I_0 \cos \omega_0 t$ et $V(t) = L\omega_0 I_0 \sin \omega_0 t$.



9. Régime transitoire d'un circuit R-L-C :

En transformant (E, R) selon Norton, on écrit la loi de nœud.

 $E/R = u/R + i_L + Cdu/dt$ avec $u = Ldi_I/dt$

En dérivant par rapport au temps :

$$\frac{d^2u}{dt^2} + \frac{1}{RC}\frac{du}{dt} + \frac{1}{LC}u(t) = 0.$$

Les cond. init. donnent u(0) = 0 et $i_L(0) = 0$:

ainsi
$$i_R(0) = u(0) = 0$$
 donc $i_C(0) = E/R$

donc
$$\frac{du}{dt}(0) = \frac{E}{RC}$$

La résolution complète de l'équation a ensuite été traitée en cours, sur l'exemple du circuit RLC série. La nature des solutions va dépendre du signe du discriminant Δ de l'équation caractéristique : $r^2 + (1/RC) r + 1/LC = 0$; $\Delta = (1/RC)^2 - 4/LC$.

Pour $\Delta > 0$, régime apériodique ; pour $\Delta = 0$ régime critique ; pour $\Delta < 0$ régime pseudopériodique.

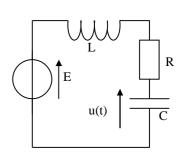
10. Etincelle de rupture :

$$1^{\circ}$$
) La loi de maille donne $E=R.i+Ldi/dt+u~avec~i=Cdu/dt$

d'où :
$$u + \frac{\omega_o}{Q} u + \omega_o^2 u = \omega_o^2 E$$
 en posant : $\omega_0^2 = 1/LC$

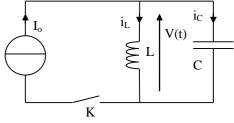
et $Q = L\omega_0/R = 1/RC\omega_0$.

La solution particulière est : u = E.



La solution générale est de type pseudo périodique,

car l'équation caractéristique : $r^2 + (\omega_0/Q) r + \omega_0^2 = 0$ a un discriminant $\Delta < 0$ vues les valeurs numériques de ω_0 et Q, calculées à partir des valeurs données pour R, L et C : $\omega_0 = 5.0.10^6$ rad/s.



On en déduit la solution complète : $u(t) = \exp\left(-\frac{\omega_0}{2Q}t\right) (A\cos\omega t + B\sin\omega t) + E$ avec :

$$\omega = \omega_0 \sqrt{1 - \frac{1}{4O^2}}$$
 Compte tenu des conditions de continuité imposant u(0) = 0

et i = Cdu/dt(0) = E/R, la solution u(t) est totalement déterminée.

La valeur $\tau=2Q/\omega_0$ est le temps de relaxation (constante de temps dans le facteur exponentiel représentant l'amortissement des oscillations). $\tau=2,0.10^{-4}$ s . τ est très supérieur à la pseudo pédiode des oscillations $T=2\pi/\omega=1,3.10^{-6}$ s. Sur une durée pas trop important, c'est-à-dire sur

quelques pseudo-périodes, l'amortissement sera négligable : la valeur du facteur $\exp\left(-\frac{\omega_0}{2Q}t\right)$ peut

être considérée comme constante (égale à 1).

La condition : u(0) = 0 amène A = -E.

En raisonnant sur la fonction approchée $u(t) = (A\cos\omega t + B\sin\omega t) + E$

on aura $du/dt = B\omega_0.\cos(\omega_0 t)$ et du/dt(0) = E/RC amène alors $B = E/RC\omega_0 = QE$.

Finalement : $u(t) \approx (-E.cos\omega_o t + Q.Esin\omega_o t) + E$

donc au voisinage de $0: u(t) \approx Q.E \sin \omega_0 t$ au premier ordre.

- 2°) D'après ce qui précède, l'évolution de u(t) en début de phénomène correspond à une évolution sinusoïdale. La valeur maximale de la fonction Q.E $\sin\omega_o t$ correspondrait à U=Q.E=500 x 40V=20 kV. Cette valeur serait atteinte pour $\omega_o t \approx \pi/2$ soit $t_{max} \approx \pi/(2\omega_o) = 3,1.10^{-7}$ s. Compte tenu de ces valeurs numériques, u(t) croït rapidement. Le potentiel explosif (de l'ordre de 1000V) est donc très rapidement atteint.
- 3°) Le moment où le potentiel explosif est atteint, c'est-à-dire où $u(t) = U_{exp} \approx 1,0~kV$, correspond à un instant $t_i << t_{max}$. L'expression approchée de $u(t): u(t) \approx Q.E \ sin\omega_o t$ est donc alors tout à fait convenable, et peut même être remplacée par sont Développement Limité à l'ordre 2 au voisinage de $0: u(t) \approx Q.E.\omega_o$.t de forme b.t avec $b = 1,0.10^{11}~V.s^{-1}$ (Remarque : le terme d'ordre 2 pour la fonction sinus est nul, c'est une fonction impaire).

L'instant t_i répond donc à : $Q.E.\omega_o.t_i = U_{exp}$ d'où : $t_i = U_{exp}$ / $(Q.E.\omega_o) = 1,0.10^{-8}$ s = 10 ns.

L'intensité circulant dans le circuit est i(t) = C.du/dt. En utilisant l'expression approchée de u(t): $u(t) \approx Q.E \ sin\omega_o t$ on aura donc : $i(t) \approx Q.C.E.\omega_o.cos\omega_o t = (E/R)cos\ \omega_o t$. En faisant un D.L.2 en 0 de la fonction cosinus, on obtient alors :

$$i(t) \approx (E/R).(1 - (\omega_o t)^2/2)$$

que l'on identifie effectivement à : $i(t) = I_o (1 - at^2)$ avec $I_o = E/R = 1,0$ A $b = \omega_o^2/2 = 1,3.10^{13}$ usi